п»ї みんなで機械学習 | ニュース屋台村
1 2 3 4 6

経済成長と人口増加を折りたたむ
『みんなで機械学習』第43回

7月 24日 2024年 社会

LINEで送る
Pocket

山口行治(やまぐち・ゆきはる)

o株式会社ふぇの代表取締役。独自に考案した機械学習法、フェノラーニング®のビジネス展開を模索している。元ファイザージャパン・臨床開発部門バイオメトリクス部長、Pfizer Global R&D, Clinical Technologies, Director。ダイセル化学工業株式会社、呉羽化学工業株式会社の研究開発部門で勤務。ロンドン大学St.George’s Hospital Medical SchoolでPh.D取得(薬理学)。東京大学教養学部基礎科学科卒業。中学時代から西洋哲学と現代美術にはまり、テニス部の活動を楽しんだ。冒険的なエッジを好むけれども、居心地の良いニッチの発見もそれなりに得意とする。趣味は農作業。日本科学技術ジャーナリスト会議会員。

◆個体差の機械学習

前回まで、個体差の機械学習(例えばフェノラーニング®)が実現される、近未来の「データの世界」を、シリーズ記事として記述してきた。「データ論」として、前例のない冒険談に挑戦した。人名や地名などの、固有名詞がある世界では、現在の機械学習(例えば、生成AI〈人工知能〉の大規模言語モデル)では不十分で、固有名詞を責任をもって解釈できない。個体差を理解(モデル化)できるようになれば、膨大な量のデータは不必要になり、個体差を示す表現型に関して網羅性のあるデータのほうが重要になる。筆者の理解では、現在の機械学習技術は、誕生したばかりの幼児段階で、社会的責任のレベルでは、小学生の段階にも至っていない。経済的な誘惑で、未熟な技術を巨大化するのではなく、未来に向けた課題を発見しながら、試行錯誤する時期のはずだ。機械学習の特許は、国別の特許出願数を争うのではなく、まさに「個性的」な特許を探し出して、新たな探索路を見いだすための、創造的なパテントマップを作ることから始めるとよいだろう。ディープラーニングの技術は、米国や中国などの覇権国家が作り出したものではなく、カナダの大学で発明された。個体差の機械学習(例えばフェノラーニング®)も、覇権国家の支配競争とは別次元の、文明論的な文脈で、みんなで機械学習しながら、おおきく成長してもらいたい。近代文明に行き詰まった人類の、最後の存続チャンスを切り開くのは、個体差の機械学習かもしれない。 記事全文>>

コメント

データを食べる
『みんなで機械学習』第42回

7月 08日 2024年 社会

LINEで送る
Pocket

山口行治(やまぐち・ゆきはる)

o株式会社ふぇの代表取締役。独自に考案した機械学習法、フェノラーニング®のビジネス展開を模索している。元ファイザージャパン・臨床開発部門バイオメトリクス部長、Pfizer Global R&D, Clinical Technologies, Director。ダイセル化学工業株式会社、呉羽化学工業株式会社の研究開発部門で勤務。ロンドン大学St.George’s Hospital Medical SchoolでPh.D取得(薬理学)。東京大学教養学部基礎科学科卒業。中学時代から西洋哲学と現代美術にはまり、テニス部の活動を楽しんだ。冒険的なエッジを好むけれども、居心地の良いニッチの発見もそれなりに得意とする。趣味は農作業。日本科学技術ジャーナリスト会議会員。

スモール ランダムパターンズ アー ビューティフル

1   はじめに; 千個の難題と、千×千×千×千(ビリオン)個の可能性

1.1 個体差すなわち個体内変動と個体間変動が交絡した状態

1.2 組織の集合知は機械学習できるのか

1.3      私たちは機械から学習できるのか

2   データにとっての技術と自然

2.1 アートからテクノロジーヘ

2.2 テクノロジーからサイエンス アンド テクノロジーへ

2.3 データサイエンス テクノロジー アンド アート

2.4 データサイクル

2.5 データベクトル

2.6 局所かつ周辺のベクトル場としてのデータとシミュレーション

3  機械学習の学習

3.1 解析用データベース

3.2 先回りした機械学習

3.3 職業からの自由と社会

3.4 認知機能の機械学習とデジタルセラピューティクス(DTx)

3.5 学習は境界領域の積分的探索-ニッチ&エッジの学習理論

3.6 機械学習との学習

4  機械学習との共存・共生・共進化-まばらでゆらぐ多様性

4.1 生活と経済の不確実性

4.2 生活と経済に関連する技術は、何を表現しているのか

4.3 スモール データ アプローチ-個体差のまばらでゆらぐ多様性

4.4 まばらでゆらぐ多様性の過去・現在・未来

4.5 生活の不確実性を予測する

4.6 弱い最適化脆弱性/反脆弱性からのスタート

4.7 ひとつのビッグ予測、たくさんのスモール適応

5  自発的な小組織(seif-motivated small organizations)

5.1 社会、地域、家族 vs. 国家、企業

5.2 組織は組織でできている組織サイクル

5.3 機械学習する組織

5.4 CAPDサイクル

5.5 ビジネス表現の個体差(AI中心8画面周辺モデル)

5.6 組織の周辺積分的思考

5.7 データサービス商品を創出する知的自由エネルギー産業-固有場知能農業

6  おわりに;生活と社会のビューティフル ランダム パターンズ

6.1 ほとんど色即是空・空即是色な世界

6.2 ランダムな人びと(前稿)

6.4 延長されたフェノラーニング®(本稿) 記事全文>>

4 responses so far

固有名詞
『みんなで機械学習』第41回

6月 19日 2024年 社会

LINEで送る
Pocket

山口行治(やまぐち・ゆきはる)

o株式会社ふぇの代表取締役。独自に考案した機械学習法、フェノラーニング®のビジネス展開を模索している。元ファイザージャパン・臨床開発部門バイオメトリクス部長、Pfizer Global R&D, Clinical Technologies, Director。ダイセル化学工業株式会社、呉羽化学工業株式会社の研究開発部門で勤務。ロンドン大学St.George’s Hospital Medical SchoolでPh.D取得(薬理学)。東京大学教養学部基礎科学科卒業。中学時代から西洋哲学と現代美術にはまり、テニス部の活動を楽しんだ。冒険的なエッジを好むけれども、居心地の良いニッチの発見もそれなりに得意とする。趣味は農作業。日本科学技術ジャーナリスト会議会員。

『スモール ランダムパターンズ アー ビューティフル』

1   はじめに; 千個の難題と、千×千×千×千(ビリオン)個の可能性

1.1 個体差すなわち個体内変動と個体間変動が交絡した状態

1.2 組織の集合知は機械学習できるのか

1.3      私たちは機械から学習できるのか

2   データにとっての技術と自然

2.1 アートからテクノロジーヘ

2.2 テクノロジーからサイエンス アンド テクノロジーへ

2.3 データサイエンス テクノロジー アンド アート

2.4 データサイクル

2.5 データベクトル

2.6 局所かつ周辺のベクトル場としてのデータとシミュレーション

3  機械学習の学習

3.1 解析用データベース

3.2 先回りした機械学習

3.3 職業からの自由と社会

3.4 認知機能の機械学習とデジタルセラピューティクス(DTx)

3.5 学習は境界領域の積分的探索-ニッチ&エッジの学習理論

3.6 機械学習との学習

4  機械学習との共存・共生・共進化-まばらでゆらぐ多様性

4.1 生活と経済の不確実性

4.2 生活と経済に関連する技術は、何を表現しているのか

4.3 スモール データ アプローチ-個体差のまばらでゆらぐ多様性

4.4 まばらでゆらぐ多様性の過去・現在・未来

4.5 生活の不確実性を予測する

4.6 弱い最適化脆弱性/反脆弱性からのスタート

4.7 ひとつのビッグ予測、たくさんのスモール適応

5  自発的な小組織(seif-motivated small organizations)

5.1 社会、地域、家族 vs. 国家、企業

5.2 組織は組織でできている組織サイクル

5.3 機械学習する組織

5.4 CAPDサイクル

5.5 ビジネス表現の個体差(AI中心8画面周辺モデル)

5.6 組織の周辺積分的思考

5.7 データサービス商品を創出する知的自由エネルギー産業-固有場知能農業

6  おわりに;生活と社会のビューティフル ランダム パターンズ(前稿)

6.1 ほとんど色即是空・空即是色な世界(前稿)

6.2 ランダムな人びと(本稿) 記事全文>>

コメント


『みんなで機械学習』第40回

6月 05日 2024年 社会

LINEで送る
Pocket

山口行治(やまぐち・ゆきはる)

o株式会社ふぇの代表取締役。独自に考案した機械学習法、フェノラーニング®のビジネス展開を模索している。元ファイザージャパン・臨床開発部門バイオメトリクス部長、Pfizer Global R&D, Clinical Technologies, Director。ダイセル化学工業株式会社、呉羽化学工業株式会社の研究開発部門で勤務。ロンドン大学St.George’s Hospital Medical SchoolでPh.D取得(薬理学)。東京大学教養学部基礎科学科卒業。中学時代から西洋哲学と現代美術にはまり、テニス部の活動を楽しんだ。冒険的なエッジを好むけれども、居心地の良いニッチの発見もそれなりに得意とする。趣味は農作業。日本科学技術ジャーナリスト会議会員。

◆制作ノート

英国の経済学者エルンスト・シューマッハー(1911~1977年)の「スモール イズ ビューティフル」における中間技術の提案を、「みんなで機械学習」として実現するため、「スモール ランダムパターンズ アー ビューティフル」という拙稿を連載している。前回は、人工知能(AI)の根っことなる「固有場知能」(ネイティブ・インテリジェンス)を、本シリーズの到達点としてまとめ、「固有場知能」を活用する農業を次のシリーズの宿題とした。「スモール ランダムパターンズ」は、本当に「ビューティフル」なのだろうか。「ランダム」な「パターン」は、そもそも矛盾した概念だ。しかし、自然においては、量子力学の2重スリット実験のように、論理的には理解しがたい確率的な「ランダムパターンズ」が存在することも事実だ。筆者は中学時代から西洋哲学にはまり、論理学の本も多数読んでいる。厳密な数理論理学(ゲーデルの不完全性定理など)によって明らかになったことは、論理は数学の証明には不可欠であっても、数学を記述するためには表現力不足ということだ。言語や絵画の表現力が、数学よりも豊かであることは疑いようがない。それでも、「スモール ランダムパターンズ」は「ビューティフル」か、という問いに答えは無さそうだ。論理で考えれば、無から有は生まれない。しかし、真空から対称性の破れによって、エネルギーや物質が生まれる。「空」を真空と考えるか、雲がある「そら」と考えるのかは、文脈に依存してはいるものの、「空」をどのようにイメージするのか「自由」だ。「ランダムパターンズ」の「自由度」が、「ビューティフル」かどうかは、人びとと共有する表現の場が「自由」であることを問うているようにも思われる。 記事全文>>

コメント

NI(ネイティブ・インテリジェンス、固有場知能)
『みんなで機械学習』第39回

5月 23日 2024年 社会

LINEで送る
Pocket

山口行治(やまぐち・ゆきはる)

o株式会社ふぇの代表取締役。独自に考案した機械学習法、フェノラーニング®のビジネス展開を模索している。元ファイザージャパン・臨床開発部門バイオメトリクス部長、Pfizer Global R&D, Clinical Technologies, Director。ダイセル化学工業株式会社、呉羽化学工業株式会社の研究開発部門で勤務。ロンドン大学St.George’s Hospital Medical SchoolでPh.D取得(薬理学)。東京大学教養学部基礎科学科卒業。中学時代から西洋哲学と現代美術にはまり、テニス部の活動を楽しんだ。冒険的なエッジを好むけれども、居心地の良いニッチの発見もそれなりに得意とする。趣味は農作業。日本科学技術ジャーナリスト会議会員。

◆制作ノート

英国の経済学者エルンスト・シューマッハー(1911~1977年)の「スモール イズ ビューティフル」における中間技術の提案を、「みんなで機械学習」として実現するため、「スモール ランダムパターンズ アー ビューティフル」という拙稿を連載している。前回は、近代合理主義の微分的思考との比較で、データの機械学習を積分的思考として描写してみた。今回が最後の各論となる。NI(ネイティブ・インテリジェンス、固有場知能)を活用する農業を、近未来のデータ文明に向かう産業的な試行錯誤として再考してみたい。「スモール ランダムパターンズ アー ビューティフル」は途中の画像以降なので、制作ノートに相当する前半部分は、飛ばし読みしてください。逆に言うと、制作ノートは形式にこだわっていないので、まとまりがないけれども読みやすいかもしれません。 記事全文>>

コメント

AI技術は、AI技術者に任せておくには重要すぎる
『みんなで機械学習』第38回

5月 07日 2024年 社会

LINEで送る
Pocket

山口行治(やまぐち・ゆきはる)

o株式会社ふぇの代表取締役。独自に考案した機械学習法、フェノラーニング®のビジネス展開を模索している。元ファイザージャパン・臨床開発部門バイオメトリクス部長、Pfizer Global R&D, Clinical Technologies, Director。ダイセル化学工業株式会社、呉羽化学工業株式会社の研究開発部門で勤務。ロンドン大学St.George’s Hospital Medical SchoolでPh.D取得(薬理学)。東京大学教養学部基礎科学科卒業。中学時代から西洋哲学と現代美術にはまり、テニス部の活動を楽しんだ。冒険的なエッジを好むけれども、居心地の良いニッチの発見もそれなりに得意とする。趣味は農作業。日本科学技術ジャーナリスト会議会員。

◆制作ノート

英国の経済学者エルンスト・シューマッハー(1911~1977年)の「スモール イズ ビューティフル」における中間技術の提案を、「みんなで機械学習」として実現するため、「スモール ランダムパターンズ アー ビューティフル」という拙稿を連載している。前回は、AI(人工知能)を中心にして、4隅を固有名詞でピン止めする、ビジネス表現の8画面周辺モデルについて考えてみた。食文化の機械学習という話題から、食と農業におけるAIの役割、そして「みんなで機械学習する」DIYから、シューマッハーの食と農業の中間技術へと、出発点に戻ってきた。「スモール ランダムパターンズ アー ビューティフル」は途中の画像以降なので、制作ノートに相当する前半部分は、飛ばし読みしてください。逆に言うと、制作ノートは形式にこだわっていないので、まとまりがないけれども読みやすいかもしれません。 記事全文>>

コメント

食文化の機械学習
『みんなで機械学習』第37回

4月 09日 2024年 社会

LINEで送る
Pocket

山口行治(やまぐち・ゆきはる)

o株式会社ふぇの代表取締役。独自に考案した機械学習法、フェノラーニング®のビジネス展開を模索している。元ファイザージャパン・臨床開発部門バイオメトリクス部長、Pfizer Global R&D, Clinical Technologies, Director。ダイセル化学工業株式会社、呉羽化学工業株式会社の研究開発部門で勤務。ロンドン大学St.George’s Hospital Medical SchoolでPh.D取得(薬理学)。東京大学教養学部基礎科学科卒業。中学時代から西洋哲学と現代美術にはまり、テニス部の活動を楽しんだ。冒険的なエッジを好むけれども、居心地の良いニッチの発見もそれなりに得意とする。趣味は農作業。日本科学技術ジャーナリスト会議会員。

◆制作ノート

英国の経済学者エルンスト・シューマッハー(1911~1977年)の「スモール イズ ビューティフル」における中間技術の提案を、「みんなで機械学習」として実現するため、「スモール ランダムパターンズ アー ビューティフル」という拙稿を連載している。前回は、ビジネスのPDCA(Plan,Do,Check,Action)サイクルをAI(人工知能)で高速回転する、CAPDサイクルについて考えてみた。社会的責任能力のない現在のAIでは、リスクの大きい社会プロセス(自動運転や教育など)へのCAPDサイクルの実装は危険すぎる。電動工具のDIY(Do It Yourself)ショップのように、AIを生活のDIYツールとして、ゆっくりと楽しむシナリオが、急ぎ過ぎない成熟した社会には必要だろう。「スモール ランダムパターンズ アー ビューティフル」は途中の画像以降なので、制作ノートに相当する前半部分は、飛ばし読みしてください。逆に言うと、制作ノートは形式にこだわっていないので、まとまりがないけれども読みやすいかもしれません。 記事全文>>

コメント

AIは社会のDIYツール
『みんなで機械学習』第36回

3月 26日 2024年 社会

LINEで送る
Pocket

山口行治(やまぐち・ゆきはる)

o株式会社ふぇの代表取締役。独自に考案した機械学習法、フェノラーニング®のビジネス展開を模索している。元ファイザージャパン・臨床開発部門バイオメトリクス部長、Pfizer Global R&D, Clinical Technologies, Director。ダイセル化学工業株式会社、呉羽化学工業株式会社の研究開発部門で勤務。ロンドン大学St.George’s Hospital Medical SchoolでPh.D取得(薬理学)。東京大学教養学部基礎科学科卒業。中学時代から西洋哲学と現代美術にはまり、テニス部の活動を楽しんだ。冒険的なエッジを好むけれども、居心地の良いニッチの発見もそれなりに得意とする。趣味は農作業。日本科学技術ジャーナリスト会議会員。

◆制作ノート

英国の経済学者エルンスト・シューマッハー(1911~1977年)の「スモール イズ ビューティフル」における中間技術の提案を、「みんなで機械学習」として実現するため、「スモール ランダムパターンズ アー ビューティフル」という拙稿を連載している。前回は、機械学習する組織として、社会制度の仕組みで収集した社会的なデータを、役所や大学などの社会的組織が機械学習して、地域の情報サービスの形で提供し、地域の小組織が自発的に組織活動に活用することを考えてみた。地域の小組織であれば、周辺の固有名詞を特定することができるので、現在の生成AI(人工知能)技術が陥るハルシネーション(事実に基づかない情報を生成する現象)、固有名詞と事実の乖離(かいり)、を防止できる。周到な考慮によって、周辺に限定したスモールデータは、支配欲に取りつかれたビッグデータを凌駕(りょうが)するだろう。「スモール ランダムパターンズ アー ビューティフル」は途中の画像以降なので、制作ノートに相当する前半部分は、飛ばし読みしてください。逆に言うと、制作ノートは形式にこだわっていないので、まとまりがないけれども読みやすいかもしれません。 記事全文>>

コメント

なぜ、植物図鑑か
『みんなで機械学習』第35回

3月 12日 2024年 社会

LINEで送る
Pocket

山口行治(やまぐち・ゆきはる)

o株式会社ふぇの代表取締役。独自に考案した機械学習法、フェノラーニング®のビジネス展開を模索している。元ファイザージャパン・臨床開発部門バイオメトリクス部長、Pfizer Global R&D, Clinical Technologies, Director。ダイセル化学工業株式会社、呉羽化学工業株式会社の研究開発部門で勤務。ロンドン大学St.George’s Hospital Medical SchoolでPh.D取得(薬理学)。東京大学教養学部基礎科学科卒業。中学時代から西洋哲学と現代美術にはまり、テニス部の活動を楽しんだ。冒険的なエッジを好むけれども、居心地の良いニッチの発見もそれなりに得意とする。趣味は農作業。日本科学技術ジャーナリスト会議会員。

◆制作ノート

英国の経済学者エルンスト・シューマッハー(1911~1977年)の「スモール イズ ビューティフル」における中間技術の提案を、「みんなで機械学習」として実現するため、「スモール ランダムパターンズ アー ビューティフル」という拙稿を連載している。前回は、個体差に関連する組織論として、組織は組織でできていることを論じた。単なる細胞の集まりが組織ではないように、組織と個人の関係は、それぞれの「表現」を介して、立体的に理解することが望ましく、個体差を機械学習する要点となる。中小企業が表現する「場所」は、地域と業種の立体構造となる。「スモール ランダムパターンズ アー ビューティフル」は途中の画像以降なので、制作ノートに相当する前半部分は、飛ばし読みしてください。逆に言うと、制作ノートは形式にこだわっていないので、まとまりがないけれども読みやすいかもしれません。 記事全文>>

コメント

社会を折りたたむ
『みんなで機械学習』第34回

2月 26日 2024年 社会

LINEで送る
Pocket

山口行治(やまぐち・ゆきはる)

o株式会社ふぇの代表取締役。独自に考案した機械学習法、フェノラーニング®のビジネス展開を模索している。元ファイザージャパン・臨床開発部門バイオメトリクス部長、Pfizer Global R&D, Clinical Technologies, Director。ダイセル化学工業株式会社、呉羽化学工業株式会社の研究開発部門で勤務。ロンドン大学St.George’s Hospital Medical SchoolでPh.D取得(薬理学)。東京大学教養学部基礎科学科卒業。中学時代から西洋哲学と現代美術にはまり、テニス部の活動を楽しんだ。冒険的なエッジを好むけれども、居心地の良いニッチの発見もそれなりに得意とする。趣味は農作業。日本科学技術ジャーナリスト会議会員。

◆制作ノート

英国の経済学者エルンスト・シューマッハー(1911~1977年)の「スモール イズ ビューティフル」における中間技術の提案を、「みんなで機械学習」として実現するため、「スモール ランダムパターンズ アー ビューティフル」という拙稿を連載している。前回は、AGI(Artificial General Intelligence;汎用人工知能)と、組織の身体感覚について考えてみた。地域に根差して、創造性に富んだ個性的な中小企業が活躍する近未来の社会は、上から目線の、大きな社会主義の福祉社会ではなく、自発的な小組織が主役となる小さい福祉社会となるはずだ。機械学習する家族の居場所を、継続して考えてゆきたい。「スモール ランダムパターンズ アー ビューティフル」は途中の画像以降なので、制作ノートに相当する前半部分は、飛ばし読みしてください。逆に言うと、制作ノートは形式にこだわっていないので、まとまりがないけれども読みやすいかもしれません。 記事全文>>

Comments are off for this post

1 2 3 4 6